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ABSTRACT 

CHARACTERIZATION OF CALCIUM HOMEOSTASIS PARAMETERS IN 

TRPV3 AND CAV3.2 DOUBLE NULL MICE 

SEPTEMBER 2017 
 

AUJAN MEHREGAN, B.S., UNIVERSITY OF MASSACHUSETTS, AMHERST 
 

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST 
 

Directed by: Professor Rafael A. Fissore 
 

In mammals, calcium influx is required for oocyte maturation and egg activation, 

as it supports the persistent calcium oscillations induced by fertilization. These oscillations 

are required for the initiation of embryo development. The molecular identities of the 

plasma membrane calcium-permeant channels that underlie calcium influx are not 

established. Among these channels, Transient Receptor Potential Vanilloid, member 3 

(TRPV3) allows divalent cations, namely strontium (Sr2+) and calcium (Ca2+) with high 

permeability, into cells, and its expression pattern seems to predict an essential role in the 

initiation of development. Another channel that was identified to be expressed in 

oocytes/eggs is the low-voltage-activated T-type channel, CaV3.2. However, the ability to 

accurately probe the expression and function of these channels on Ca2+ homeostasis in 

mouse eggs is hindered by the lack of specific and known pharmacological agents and 

antibodies for these channels. 

Here, we simultaneously knockout out these two Ca2+ influx channels in the mouse 

to explore the effects on Ca2+ homeostasis. We examined fertility rates, development, and 

morphological defects that arose from the double null pups. Next, we investigated the 

consequences on Ca2+ store content in immature and mature oocytes and eggs. We also 
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examined the effects on fertilization-induced Ca2+ oscillations in response to in vitro 

fertilization and PLCz cRNA microinjection. We found that female mice null for these 

channels display drastic subfertility compared to the single knockout mice for these 

channels. Additionally, the Ca2+ store content is significantly diminished in double 

knockout eggs versus controls, as was the frequency of the fertilization-induced Ca2+ 

oscillations. These results suggest that these channels play a crucial role in Ca2+ influx 

during maturation and contribute to maintain Ca2+ oscillations post-fertilization. These null 

oocytes and eggs will be an important tool to perform electrophysiological studies to 

accurately measure the native current(s) of a specific channel(s) in eggs, and to identify the 

channel(s) that mediate Ca2+ during fertilization. 
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CHAPTER 1 

INTRODUCTION 

Mammalian egg activation is a widely-researched field, as it is the first stage of embryo 

development. During this event, the egg requires energy to undergo changes that will prepare 

it for fertilization, such as resuming meiosis, remodeling its outer cortex to block polyspermy, 

reorganizing the cytoskeleton and meiotic spindle, and translating, storing, and changing 

maternal mRNA and protein levels (Horner and Wolfner, 2008). The focus of the Fissore 

laboratory is to discover the mechanism by which sperm induces activation and subsequently 

triggers embryo development in mammals.  

In this species, fertilization is induced when the sperm fuses to a mature oocyte (egg), 

and initiates changes in the intracellular concentration of free calcium ([Ca2+]i). Ca2+ 

homeostasis is regulated and optimized in the oocyte in preparation for fertilization (reviewed 

in Berridge et al., 2000; Wakai et al., 2011; Whitaker, 2006). At this critical moment, the sperm 

induces a series of precise Ca2+ rises, known as oscillations, that are ultimately responsible for 

triggering embryonic development via regulation of the stability of proteins that regulate cell 

cycle progression, and resumption and completion of meiosis (Miyazaki and Igusa, 1981; 

Ducibella et al., 2002; Ozil et al., 2005). Ca2+ oscillations rely on Ca2+ influx from the 

extracellular media to replenish the stores, and a goal of the laboratory is to identify the 

molecule(s)/channel(s) responsible for this influx, as this has not yet been established.  

The channels that mediate Ca2+ influx are thought to reside in the plasma membrane 

(PM) of the egg. Research shows that the oocyte, during maturation – the process initiated 

prior to ovulation and fertilization and following the surge of luteinizing hormone – undergoes 

a plethora of changes including the increase of Ca2+ store content ([Ca2+]ER), which requires 
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Ca2+ influx (reviewed in Wakai et al., 2011). Remarkably, previous studies have also 

demonstrated that during maturation, Ca2+ influx progressively decreases as [Ca2+]ER increases 

(reviewed in Wakai et al., 2011). Baseline Ca2+ and [Ca2+]ER are strictly controlled because an 

excess of Ca2+ could cause parthenogenetic activation, fragmentation and/or apoptosis (Gordo 

et al., 2002; Ozil et al., 2005), whereas a deficit will impede many cellular functions, including 

protein synthesis, completion of maturation and initiation of embryonic development. Oocytes 

and eggs have several mechanisms to regulate elevated intracellular Ca2+, including pumps and 

exchangers such as the PM Ca2+-ATPase (PMCA) and Na+/Ca2+ exchangers that extrude 

excess Ca2+, while the sarco-endoplasmic reticulum Ca2+-ATPases reuptake Ca2+ into the ER 

thereby refilling its stores (Berridge et al., 2000; Bootman et al., 2001). This entire 

phenomenon is known as the Ca2+ toolkit, one that every cell type possesses to regulate Ca2+ 

and trigger crucial processes such as muscle contraction, exocytosis, and metabolism, among 

others (Berridge et al., 2003). 

The identification of the molecular mechanisms and channels responsible for Ca2+ 

homeostasis in mammalian oocytes and eggs is largely incomplete. Among the PM channels, 

the transient receptor potential (TRP) family of channels play an essential role in detecting 

changes in the environment via stimuli ranging from changes in temperature to changes in 

voltage. With seven subfamilies and nearly 30 human members (Clapham et al., 2003), TRP 

channels are expressed in multiple cell types and tissues. Preliminary studies in the laboratory 

show that members of the TRP family of channels are expressed in mouse oocytes; specifically, 

using RT-PCR, we have demonstrated the presence of TRP Vanilloid, member 3 (TRPV3). 

TRPV3 allows divalent cations, namely strontium (Sr2+) and Ca2+ with high permeability, into 

cells, and its expression pattern seems to predict an essential role in the initiation of 
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development. Importantly, it is essential for triggering parthenogenetic embryonic 

development using Sr2+ stimulation; however, it is not required for normal fertility, as null 

females are fertile (Carvacho et al., 2013). Another channel involved in Ca2+ homeostasis is 

the T-type voltage-gated channel, CaV3.2. In a study illustrating the effects of CaV3.2 in 

oocytes and eggs, Bernhardt et al. show that a voltage-activated Ca2+ current that is normally 

present in mouse eggs, is absent in Cacna1h-/- eggs (2015). Nevertheless, these females are 

mildly subfertile, which is consistent with the knowledge that changes in membrane potential 

during mouse fertilization are minor and the holding membrane potential of mouse oocytes 

and eggs is such that only a minor number of CaV channels should be active (Igusa et al., 1983; 

Jaffe and Cross, 1984). 

Furthermore, these channels are only differentially expressed in the maturing oocyte. 

TRPV3 expression is nearly absent in the early germinal vesicle (GV) stage of the oocyte, but 

rises steadily with its maximal expression being at a fertilization-competent MII egg (Carvacho 

et al., 2013). On the other hand, the expression levels of CaV channels during oocyte maturation 

and in eggs are unknown. Remarkably, these channels were one of the first channels to be 

recorded via electrophysiology in oocytes/eggs (Peres, 1986; Peres; 1987). Why some of these 

channels are differentially expressed and/or regulated during oocyte maturation requires 

further investigation. 

Thus, despite identification of some channels in mammalian oocytes and eggs, the 

complete set of channels responsible for filling the internal Ca2+ stores and supporting 

oscillations has not been found. Furthermore, the ability to accurately probe the effects of 

channel inhibition on Ca2+ homeostasis in mouse eggs is hindered by the lack of specific and 

known pharmacological agents. Therefore, evaluation of Ca2+ store content, Ca2+ changes in 
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response to agonists, and fertilization in oocytes and eggs null for specific channel(s) is one of 

the approaches used to identify the channel(s) responsible for supporting Ca2+ oscillations 

required for embryo development. In addition, these oocytes and eggs null for specific Ca2+ 

channel(s) will be an important tool to perform electrophysiological studies to accurately 

measure the native current(s) of a specific channel(s). 

To these ends, we hypothesize that mice lacking both Trpv3 and Cacna1h will 1) be 

subfertile and/or infertile and 2) exhibit altered Ca2+ homeostasis and possibly decreased 

developmental competence. The implications of this study will aid in the development of 

conditions to enhance developmental competence, especially of oocytes matured in vitro. 

Moreover, since Ca2+ is required for egg activation, the elucidation of the channels that mediate 

influx at fertilization as well as the development of specific channel blockers, could become a 

novel method of contraception to be used in humans, or to prevent the uncontrolled population 

growth of wild life species. 
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CHAPTER 2 

RESULTS 

Double null mice lacking Trpv3 and Cacna1h genes are subfertile. 

Our first goal was to generate a double null mouse line lacking the Trpv3 and Cacna1h 

genes. The rationale for this stemmed from the establishment of the single knockout lines for 

these genes displaying little effect on Ca2+ homeostasis or influx in oocytes (Carvacho et al., 

2013; Bernhardt et al., 2015). Our objectives were to determine the degree to which the double 

null mouse line will show fertility defects, and at the same eliminate two important channels 

that are present in oocytes/eggs that support Ca2+ influx and display electrophysiological 

currents. Our ultimate goal is to pinpoint the channel(s) responsible for Ca2+ influx during 

fertilization and egg activation. The double null mouse line was obtained following breeding 

of single knockout mice to 

generate the initial pool of double 

heterozygotes. Males and females 

of this generation were bred to 

generate the parent generation of 

double knockout and double 

heterozygous mice that were 

used in the following studies. 

Germline deletion of the Trpv3 

and Cacna1h alleles was 

confirmed via PCR analysis using ear tissue DNA prepared from 21 day-old mice (Fig. 1). 

Figure 1. PCR confirmation of targeted deletions of 
Trpv3 and Cacna1h genes. 
PCR Genotyping of wild-type (WT), heterozygous (Het), 
and knockout (KO) mice. Two sets of primers were used 
to amplify Trpv3 and Cacna1h as described in Methods. 
Products yielded from Primer Set A: WT 800 bp, Het 800 
& 300 bp, KO 300 bp. Products yielded from Primer Set 
B: WT 480 bp, Het 480 & 330 bp, KO 330 bp. 
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We next evaluated the fertility of the males and females lacking the Trpv3 and Cacna1h 

genes. The single knockout lines for Trpv3-/- and Cacna1h-/- have previously been shown to be 

viable and fertile (Cheng et al., 2010; Chen et al., 2003). Double heterozygous mice were used 

as controls. Five females from each group, double knockout (dKO) and double heterozygous 

(dHET) were bred with five males of the same genotype for 36 weeks. Data from the first seven 

litters was used for analysis. The time to first litter was significantly different, as double 

knockout females delivered pups after a mean of 41.2 ± 2.31 days post-introduction of the male 

compared to double heterozygous females who delivered pups after 26.6 ± 2.38 days (p £ 0.05). 

The interval between double knockout litters increased dramatically by the fourth parturition; 

Figure 2. Double knockout females display inconsistency in fertility after the third 
month of mating. 
A - B: Interval between litters per female and number of pups born per litter, respectively. 
Linear regression was applied using data from each individual mating pair per genotype, n = 
5 in each group. Error bars represent standard error. C: Quantification of A, where mean 
interval between litters was calculated using column statistics in Prism software (dHET = 
28.1 ± 2.24; tKO = 27.6 ± 3.0; dKO = 32.6 ± 5.19). D: Quantification of B, where mean 
number of pups per litter was calculated (dHET = 8.47 ± 0.39; tKO = 7.27 ± 0.27; dKO = 
4.9 ± 0.59). All values are represented as Mean ± S.E.M. E: Total number of pups born to 
date. Number of pups were recorded at birth. Values represent sum of all pups from each 
individual mating pair after 36 weeks of uninterrupted breeding. Statistical significance was 
calculated using one-way analysis of variants followed by Tukey’s Multiple Comparison test 
(***: p £ 0.0001 or **: p £ 0.05). 
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68 days in the double knockout line versus 34.5 days in the double heterozygous line (Fig. 2A). 

The average litter size from double knockout females decreased by about 50% to a mean of 

4.56 ± 0.39 versus 8.47 ± 0.39 (p £ 0.0001), while the number of litters produced between the 

two groups was comparable (Table 1). Remarkably, in the double knockout line, the number 

of pups per litter decreased significantly by, or after, the third parturition (dKO: 4.9 ± 0.59 

versus dHET: 8.47 ± 0.39; p £ 0.0001) (Fig. 2B). It is also worth noting that after the third 

parturition, and with each successive parturition, the number of neonatal deaths became 

prominent, with about 40-80% of pups dying per litter (data not shown). The total number of 

pups born from all females in each group varied significantly with a total of 115 pups yielded 

from double knockout females versus 223 pups yielded from the controls (p £ 0.0001) (Fig. 

2C). These results demonstrate that these channels are not required for fertilization or to 

support embryo development to term; although, they seem necessary for full fertility. 

Next, we investigated the possibility of obvious differences in ovarian size, ovulation 

rates, and on the rates of in vitro maturation and in vitro fertilization. First, we examined 

ovarian weight and number of eggs ovulated post hormone injection, and found that there was 

no significant difference in either category (Fig. 3A-B). Ovarian shape and size were also 

similar between the two groups (Fig. 3C). It is worth noting that these evaluations were 

Table 1. Double knockout mice display substantial subfertility. 
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performed in young animals, which, as shown in the previous figures, were not expected to 

show defects in 

fertility. Next, we 

evaluated whether 

GV oocytes from the 

double heterozygous 

and double knockout 

mice were able to 

mature completely 

under in vitro 

conditions. We used 

Chatot, Ziomek, and 

Bavister (CZB) 

medium supplemented 

with 4 mg/mL bovine 

serum albumin (BSA) 

for 12 hours under 5% 

CO2 and 37 ˚C. There 

was no delay in any stage of maturation in the double knockout oocytes compared to rates 

observed in control oocytes (Fig. 3D). Finally, in vivo matured MII eggs from each line were 

also fertilized in vitro, and development to blastocyst was examined; we were unable to 

observe delays or morphological differences between embryos of the two groups (Fig. 3E). 

This data reinforces the notion that TRPV3 and CaV3.2 channels are functionally present in 

Figure 3. Double knockout females display no morphological 
differences. 
A: Mean mass of superovulated ovaries taken after MII egg 
collection. Each pair of ovaries was weighed individually. Mean ± 
S.E.M. for each group was calculated from n = 28 ovaries. Statistical 
significance was calculated using two-tail t-test. B: Number of MII 
eggs ovulated 14 hours post-hCG injection. Mean ± S.E.M. for each 
group was calculated from n = 14 females. Statistical significance 
was calculated using two-tail t-test. C: Ovaries were prepared for 
imaging by removing excess fat tissue and oviduct. Images were 
taken on a Nikon dissection microscope outfitted with a 1X shutter. 
Scale bar represents 50 µM. D-E: DIC image of MII egg and 2-cell 
stage embryo. Images were taken on a Nikon Diaphot microscope 
outfitted with an 8 megapixel camera. Scale bars represent 10 µM. 
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mouse oocytes and eggs, but are not required for oocyte maturation or egg activation, at least 

in young female mice.  

Functional evidence that double knockout females lack TRPV3 and CaV3.2 channels. 

Strontium (Sr2+), though toxic to cells after long exposures, is a useful method to induce 

parthenogenesis in 

rodent eggs. In MII eggs, 

Carvacho et al. 

demonstrated that Sr2+ 

influx is mediated via 

TRPV3 channels (2013). 

We therefore tested if 

exposing double 

knockout and double 

heterozygous oocytes 

and eggs to 10 mM SrCl2 

for two hours induced 

oscillations. As expected, 

when TRPV3 and CaV3.2 

channels were absent, 

double knockout GV 

oocytes showed 

significantly diminished 

spontaneous oscillations compared to double heterozygous oocytes that showed responses 

Figure 4. Functional evidence that double knockout eggs lack 
TRPV3 and CaV3.2 channels. 
A: Spontaneous oscillations in GV oocytes induced by exposure to 
10 mM SrCl2. Representative double heterozygous oocyte (black 
trace), have 2-3 oscillations in 60 minutes versus (n = 6/8). B: 
Spontaneous oscillations in GV oocytes induced by exposure to 10 
mM SrCl2. Representative double knockout oocyte (red trace), have 
0-1 oscillation in 60 minutes (n = 3/8). C-D: Oscillations induced in 
MII eggs by exposure to 10 mM SrCl2. C, black trace shows 
representative double heterozygous egg, showing 3-4 oscillations in 
60 minutes (n = 16/20) versus D, red trace, which shows 
representative double knockout egg (no response; n = 0/20). 200 µM 
2-APB was applied to media at the end of the experiment. 
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(Fig. 4A-B). At MII, double knockout eggs failed to show any Ca2+ oscillations due to Sr2+ 

influx, whereas the double heterozygous eggs showed responses (Fig. 4C-D). Further, when 

eggs were incubated in 10 mM SrCl2-containing media for two hours then washed into culture 

media, double knockout eggs did not show any signs of activation, such as extrusion of the 2nd 

polar body, pronucleus formation or cleavage, whereas controls showed complete egg 

activation (Fig 4E). Another way to test for the absence of TRPV3 is by examining the response 

to 2-Aminoethoxydiphenyl borate (2-APB), which was first identified as a blocker of IP3R1 

(Maruyama et al., 1997). Remarkably, 2-APB potentiates TRP Vanilloid channels, and is the 

most used activator of TRPV3 (Chung et al., 2004; Hu et al., 2004; Hu et al., 2009). Here, we 

show that at 200 µM, 2-APB does not induce a Ca2+ rise in the double knockout eggs, but it 

does in control eggs (Fig. 4C-D). This data confirms and reinforces the finding that 2-APB 

induces a Ca2+ rise in eggs through the TRPV3 channel and that our double knockout mice 

lack TRPV3.  

The absence of CaV3.2 is harder to test without electrophysiology; although, recent 

evidence from our laboratory has shown that CaV3.2 may be an important mediator of Sr2+ 

influx at the GV stage. In wildtype (WT) mice, 10 mM SrCl2 exposure at the GV stage elicits 

spontaneous and irregular Ca2+ rises. We tested this effect in the double knockout oocytes, and 

observed that there was a diminished effect of SrCl2 exposure (Fig. 4B), suggesting that CaV3.2 

channels may underlie most of the Ca2+ influx at the GV stage. Together, our results show that 

our double knockout mice lack functional expression of TRPV3 and CaV3.2 channels. 

Ca2+ stores are affected in double knockout females. 

The subfertility of the double knockout mice suggested that the oocytes may have some 

impaired Ca2+ homeostasis parameters. It has been previously documented that the Ca2+ 
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content within the ER increases ([Ca2+]ER) throughout oocyte maturation, which effectively 

plays a role in the preparation of the oocyte for fertilization (Jones et al., 1995; Wakai et al., 

2011; Wakai et al., 2013). Little is known about the mechanism by which oocytes accumulate 

Figure 5. Ca2+ stores are affected in double knockout eggs. 
A-B: Total Ca2+ store content was approximated by the addition of 2.5 µM Ionomycin under 
nominal Ca2+ conditions. Black trace (A; n = 20) represents double heterozygous mean. Red 
trace (B; n = 20) represents double knockout mean. Ionomycin was added after 7 minutes of 
recording baseline values. C-D: Summary of parameters measured. Area under the curve and 
relative max amplitude were calculated using Area Under the Curve analysis in Prism software 
after addition of IO. Baseline was calculated from mean of y values from x = 0 to x = 5 min. 
(AUC of dHET: 9.69 ± 0.86, n = 8; dKO: 5.13 ± 0.46, n = 10; p ≤ 0.0001). E-F: [Ca2+]ER was 
measured by the addition of 10 µM thapsigargin (TG) under nominal Ca2+ conditions. Black 
trace (E; n = 20) represents double heterozygous mean. Red trace (F; n = 20) represents double 
knockout mean. TG was added after 6 minutes of recording baseline values. G-H: Summary 
of parameters measured from time of TG addition until return to baseline values. Area under 
the curve and relative max amplitude were calculated using Area Under the Curve analysis in 
Prism software after addition of TG. Baseline was calculated from mean of y values from x = 
0 to x = 5 min. (AUC of dHET: 2.03 ± 0.095, n = 20; dKO: 1.33 ± 0.085, n = 20; p ≤ 0.0001). 
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Ca2+ in the stores; though results from our laboratory suggest that the main source of increased 

[Ca2+]ER is due to influx of external Ca2+. Since TRPV3 and CaV3.2 are important Ca2+ influx 

channels, we hypothesized that the [Ca2+]ER would be diminished. 

To test this hypothesis, we used a Ca2+ ionophore, Ionomycin (IO), to empty all Ca2+ 

stores in the cell (Fig. 5A-B). By analyzing the resulting area under the curve and relative 

maximum amplitude (Fig. 5C-D), we observed that the total Ca2+ content, measured by area 

under the curve, was significantly decreased in the dKO mice (5.13 ± 0.46) compared to the 

control mice (9.69 ± 0.86; p £ 0.0001). Next, we directly examined the impact on [Ca2+]ER by 

using Thapsigargin (TG), a sarcoendoplasmic reticulum calcium ATPase (SERCA) inhibitor, 

which is the pump that fills the ER, the major Ca2+ reservoir in the cell (Fig. 5E-F) (Jones et 

al., 1995; Kline and Kline, 1992; reviewed in Berridge et al., 2002). In the absence of 

extracellular Ca2+, TG causes a transient increase in intracellular Ca2+ levels by emptying the 

ER, and the empty stores can now support Ca2+ influx to refill the stores. Such a mechanism 

can be visualized if, after returning to baseline, extracellular Ca2+ is added back to the media. 

We tested the eggs’ ability to influx Ca2+ after TG by adding 2 mM CaCl2. We observed a 

significant difference in [Ca2+]ER levels between the double knockout (mean area of 1.33 ± 

0.085 AU) and double heterozygous oocytes (mean area of 2.03 ± 0.095 AU; p £ 0.0001) (Fig. 

5G-H). Notably, there was no significant difference in Ca2+ influx capability between the two 

groups (data not shown). Collectively, these results suggest that oocytes null for two Ca2+ 

influx channels can still maintain, but to a lesser degree, [Ca2+]ER levels during maturation and 

in MII eggs, and therefore that TRPV3 and CaV3.2 channels are required to obtain a full amount 

of [Ca2+]ER 
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Ca2+ influx is diminished post-fertilization in double knockout eggs. 

Previous studies have suggested that the introduction of PLCz following sperm-egg 

fusion underlies egg activation and fertilization-associated [Ca2+]i oscillations (Saunders et al., 

2002). This mechanism occurs via the activation of the egg’s phosphoinositide pathway to 

generate inositol 1,4,5-triphosphate (IP3), which in turn triggers IP3-receptor mediated Ca2+ 

release from the internal stores (Saunders et al., 2002; Miyazaki et al., 1993; Miyazaki and Ito, 

2006; Jellerette et al., 2000). TRPV3 has been previously shown to be unnecessary for the 

maintenance of fertilization-induced Ca2+ oscillations (Carvacho et al., 2013). To examine how 

Figure 6. Ca2+ influx is diminished post-fertilization. 
Oscillation pattern is affected following egg fertilization. A-B: Oscillations induced by in 
vitro fertilization in double heterozygous eggs (A, black trace; n = 10/20) have 10.7 ± 0.88 
oscillations in 60 minutes versus double knockout eggs (B, red trace; n = 12/20) who have 
4.8 ± 0.37 oscillations in 60 minutes. C: Summary of parameters measured. D-E: Oscillations 
induced by 0.01 µg/µL mouse PLCζ in double heterozygous (D, black trace; n = 18/20) have 
3.06 ± 0.17 oscillations in 60 minutes versus double knockout eggs (E, red trace; n = 15/20) 
who have 1.54 ± 0.22 oscillations in 60 minutes. 10 mM CaCl2 was applied at the end of the 
experiment. F: Summary of parameters measured. Statistical significance was calculated 
using two-tail t-test, significance in both cases had p ≤ 0.0001. 
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double knockout eggs mounted oscillations, we performed in vitro fertilization in double 

knockout and double heterozygous eggs, and examined the Ca2+ responses (Fig. 6A-B). 

Although all mammalian studies to date mount oscillations in response to fertilization, the Ca2+ 

responses display certain degrees of species-specificity (Ozil et al., 2006; Ducibella and 

Fissore, 2008). We observed that while double heterozygous eggs showed the normal 

frequency of Ca2+ oscillations, the frequency of oscillations in double knockout eggs was 

substantially lower (Fig. 6C) with mean frequencies of 10.7 ± 0.88 oscillations per hour versus 

4.8 ± 0.37 oscillations per hour, respectively (p £ 0.0001). The total number of Ca2+ transients 

was also decreased in the double knockout eggs compared to the double heterozygous eggs 

(data not shown), suggesting that these channels are not required for the initiation of 

fertilization-induced oscillations, but remarkably affect the periodicity of such. 

As a surrogate of fertilization, we tested the ability of the double knockout eggs to 

mount Ca2+ oscillations following PLCz cRNA microinjection, which is the sperm’s 

component responsible for inducing Ca2+ oscillations (Parrington et al., 1999; reviewed in 

Swann et al., 2006; Parrington et al., 2007) As shown, the time to initiation was longer, and 

the mean number of Ca2+ transients in one hour after the first transient was lower for double 

knockout eggs (1.54 ± 0.22) versus control eggs (3.06 ± 0.17; p £ 0.0001) (Fig. 6D-F); 

however, when 10 mM Ca2+ was added to the extracellular media, double knockout eggs still 

showed rapid oscillations, suggesting that these channels, while not required to maintain 

oscillations, play a role in Ca2+ influx during fertilization.  



www.manaraa.com

15 

TRPM7 is expressed in eggs of double knockout mice. 

The fact that the deletions of Trpv3 and Cacna1h did not fully prevent the filling of 

[Ca2+]ER suggests the presence of Ca2+ influx by other channels. TRP Melastatin 7 (TRPM7) 

presence has been identified via electrophysiology (Carvacho et al., 2016), and is functionally 

expressed in oocytes. This unique chanzyme is significantly modulated by free magnesium 

(Mg2+) at the plasma membrane-associated domain, by Mg2+-ATP at the intracellular kinase 

domain, as well as by high extracellular concentrations of Mg2+ (Bates-Withers et al., 2011). 

Remarkably, physiological concentrations of Mg2+ in the cell and concentrations of Mg2+ in 

commonly used culture media, like HEPES-buffered Tyrode’s lactate solution (TL HEPES), 

are great enough to partially obstruct TRPM7 current.  

Recently, it has been shown that fertilization-induced embryo development in several 

species is increased in media with lower concentrations of Mg2+ (Herrick et al., 2015). To 

determine if indeed high extracellular Mg2+ was affecting oscillations, we first induced 

spontaneous oscillations in GV oocytes, and monitored oscillations in Mg2+-containing and 

Figure 7. TRPM7 is expressed in double knockout females. 
A-B: Oscillations induced by 10 mM SrCl2 in double heterozygous GV oocytes (A, black 
trace; n = 30/30) and double knockout GV oocytes (B, red trace; n = 18/20). Monitoring was 
continuous throughout changes in Mg2+ concentrations. 
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Mg2+-free environments (Fig. 7A-B). By adding Mg2+ back to the media in the latter scenario, 

oscillation frequency slowed and, in some cases, ceased to continue. We observed the same 

effects in double knockout eggs, which suggest for the first time, that TRPM7 is expressed in 

eggs of double KO mice, and that its presence may explain, at least in part, the initiation and 

persistence of oscillations in these eggs. 
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CHAPTER 3 

DISCUSSION & CONCLUSIONS 

Here, we extended studies on the functions of two main plasma membrane channels 

responsible for Ca2+ influx in mouse oocytes and eggs, TRPV3 and CaV3.2. These channels 

were one of the first channels identified via molecular biology and electrophysiology (Peres, 

1986; Peres, 1987; Peier et al., 2002; Xu et al., 2002). They are expressed in maturing oocytes, 

although definitive characterization of their expression, and function of CaV3.2 channels, 

during this process requires further investigation. Nonetheless, we aimed to study the extent to 

which these channels are responsible for maintaining and increasing [Ca2+]ER during 

maturation as well as their role in fertilization. Previously, it has been shown that mouse 

oocytes null for only TRPV3 (Carvacho et al., 2013) or only Cav3.2 (Bernhardt et al., 2015) 

do not display any effect in developmental or fertilization competency and are neither 

necessary nor sufficient for Ca2+ oscillations. Nevertheless, given their prominent expression 

in oocytes and distinct expression pattern, at least in the case of TRPV3, we speculated their 

simultaneous elimination might have consequences in the regulation of Ca2+ homeostasis 

and/or fertility.  

Mouse oocytes and eggs contain a host of other potential sources of Ca2+ influx via the 

PM. Notably, another TRP family member, TRPM7, has been reported to be imperative for 

embryonic development (Jin et al., 2008), suggesting that, in addition to magnesium and zinc, 

[Ca2+]i might also be ferried through this channel. We recently demonstrated expression of this 

channel in GV oocytes and MII eggs (Carvacho et al., 2016), though further experiments are 

required to clarify the function of TRPM7 during oocyte maturation. Interestingly, we found 

that Ca2+ influx and oscillations post-fertilization are markedly impacted by the concentration 
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of extracellular Mg2+ ([Mg2+]o). Magnesium homeostasis in the cell is largely mediated by 

TRPM7 (Bates-Withers et al., 2011). However, [Mg2+]o also acts as an antagonist of TRPV3 

(Luo et al., 2012). With this in mind, our results show that double knockout mice will serve as 

an invaluable tool to evaluate the effect of [Mg2+]o on TRPM7 and ultimately on Ca2+ influx. 

An additional complication when attempting to characterize the function of these 

channels in mouse oocytes and eggs is that antibodies to determine protein expression and 

distribution of these channels, as well as specific inhibitors, are not commercially available. 

The only way to definitively determine the role of these channels is to perform calcium imaging 

experiments with the use of (non)-specific pharmacological agonists and antagonists, such as 

2-APB, Mibefradil, and Sr2+, as well as electrophysiology. To this end, we generated a double 

knockout line lacking these channels to directly measure the presence of other fundamental 

channels responsible for Ca2+ influx. By knocking out these channels from the oocyte and egg, 

we can eliminate the use of non-specific agents that may have adverse effects on other PM 

channels and/or organelles. 

Double Knockout Fertility 

CaV3.2 channel function is not required for oocyte maturation, as a normal number of 

oocytes seem to complete maturation and reach the MII stage (Bernhardt et al., 2015). 

Similarly, TRPV3 channel function loss does not show an effect on maturation and ovulation 

rates (Carvacho et al., 2013). Remarkably, here we show a substantial decline in double 

knockout fertility rates, especially after the fourth litter, which also coincides in parturitions 

occurring at greater, though inconsistent, intervals. It is presently unclear what the underlying 

cellular or molecular reasons that progressively compromise fertility could be, as these defects 

are not observed in single KO lines. Reduced coronary function has been noted in mice lacking 
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CaV3.2 channels (Chen et al., 2003); although it is unclear how this might impact fertility, since 

as noted, this line has only a very mild and consistent reduced litter size (Bernhardt et al., 

2015). The examination of histological sections of the ovaries, oviduct, and uterus following 

timed mating, which will be pursued in future studies, might allow us to reach more definitive 

conclusions concerning the factor(s) compromising fertility in this model. 

Ca2+ Store Content in Double Knockout Mice 

Using calcium-imaging measurements of double heterozygous and double knockout 

mouse oocytes after calcium ionophore addition and/or SERCA inhibition, we found that 

double knockout eggs are still capable of Ca2+ influx both at GV and at MII stages, although 

eggs of dKO mice showed a reduced [Ca2+]ER store content, as assessed by addition of TG. 

While we presently do not know the channel(s) underlying the influx required to fill the internal 

stores, TRPM7, as previously noted, is a candidate. Regardless, our data demonstrate that these 

channels are not the sole channels required for Ca2+ influx during maturation. Notably, we 

have generated a tool that can be used to more directly measure the main channel(s) responsible 

for these events during oocyte maturation and egg activation. 

Sr2+ Response in Double Knockout Oocytes and Eggs 

Sr2+ is the main agent used in parthenogenesis of rodent eggs. This ion influx at the MII 

stage in mouse MII eggs is mediated by TRPV3 (Carvacho et al., 2013), and is thought to 

sensitize IP3R1 receptors, thereby facilitating Ca2+ oscillations (Zhang et al., 2005). While 

TRPV3 is the main channel for Sr2+ influx at MII, it is unlikely to be such at the GV stage, as 

at this stage, TRPV3 expression is not detected. Nevertheless, there is evidence in the literature 

that CaV channels may mediate divalent cation influx at the GV stage (Hirano et al., 1989a; 

Hirano et al., 1989b). The generation of double knockout mice seems to confirm these results, 
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as is shown that while WT or dHET GV oocytes displayed Sr2+ oscillations; oscillations were 

greatly reduced in GVs of dKO mice. Nevertheless, we found a [Mg2+]o-regulated channel that 

allows Sr2+ influx in GV oocytes of the dKO line, although additional studies are required to 

characterize the nature of this influx, as its consequence in MII eggs remains unknown. Given 

that TRPM7 is also permeable to divalent cations, the channel responsible for this influx may 

be TRPM7, but further investigation using inhibitors and conditional knockout models is 

needed to confirm this.  

Ca2+ Measurements Post-Activation and -Fertilization 

To test the effects of the double channel deletion on fertilization-induced oscillations, 

we performed in vitro fertilization and monitored [Ca2+]i responses. Double knockout eggs 

showed greatly decreased fertilization-induced Ca2+ oscillations, with oscillations showing 

increased intervals right from the initiation of the oscillations. Similar results were observed 

following injection of PLCz cRNA. In addition, in both IVF and after PLCz cRNA injection, 

the persistence of the oscillations seemed shortened. The mechanism whereby the absence of 

these channels precludes the mounting of a robust [Ca2+]i response is unknown, but it appears 

that they contribute to support this influx, which is required to maintain the oscillations. 

Functional Role of TRPV3 and CaV3.2 in Mouse Oocytes and Eggs 

Given that oscillations persist in eggs of the dKO mice, a question that arises is why 

these channels are present in oocytes and eggs. In the case of CaV3.2 channels, which are 

voltage-gated channels, the question is very relevant, as the mammalian egg, a non-excitable 

cell and in contrast to invertebrate species, experiences only a small change in membrane 

potential (Jaffe et al., 1983; Igusa et al., 1983). Nevertheless, as mentioned, CaV3.2 currents 

have been measured in oocytes and eggs (Peres, 1986; Day et al., 1998); although at the 
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reigning resting membrane potential in eggs between -30 to -40 mV (Peres, 1986), they are 

largely inactive. Nevertheless, a portion of the channels may display persistent inward currents 

at low voltages, referred to as “window currents” (Backs et al., 2010; Igusa and Miyazaki, 

1983). These currents have been detected in several cell types at or near the resting membrane 

potential, which was comparable to the resting potential of unfertilized mouse oocytes and 

eggs (Bernhardt et al., 2015). Thus, it is possible that these channels, in oocytes and eggs, may 

play a role in maintaining Ca2+ homeostasis and a part in establishing appropriate [Ca2+]ER 

levels, as suggested by others (Bernhardt et al., 2015). 

The functional expression of TRPV3 is also in agreement with this hypothesis. Single 

knockout, Trpv3-/- eggs do not show a change in oscillation frequency post-fertilization or 

activation; thus, it is plausible that eggs may have a redundant, compensatory system that 

sustains a normal oscillation pattern. It is also possible that there are undetermined endogenous 

modulators of TRPV3 and CaV3.2 in the oocyte and egg. Future studies will examine this 

possibility, along with the expression and direct activation of these channels in humans. 

Nevertheless, we have provided evidence here that these channels, though their exact function 

remains unknown, contribute to maintaining Ca2+ homeostasis pre- and post-fertilization, as in 

their absence, the [Ca2+]ER is less filled, and the oscillations after fertilization are more spaced 

out. More importantly, we have generated a tool that can be implemented in laboratory 

procedures to more accurately determine the channel(s) required and responsible for 

fertilization, both at a molecular level and at an electrophysiological level.  

In conclusion, the eggs of this double knockout line have showed that these channels 

are not essential for the initiation and maintenance of oscillations, but contribute to Ca2+ 

homeostasis. Furthermore, since there appears to be a marked decline in fertility with time, a 
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full appreciation of their role on fertility requires additional studies. In addition, this line of 

double knockout mice and eggs will aid to: a) establish the specificity of commonly used 

agonists and antagonists for these channels; and b) perform electrophysiological procedures to 

identify remaining Ca2+ channels, as two of the main channels have been eliminated. Given 

that we still do not know most of the channels that mediate Ca2+ influx in oocytes and/or eggs, 

this strategy may allow identifying those active channels. Gaining insight into the mechanism 

of Ca2+ influx during maturation and fertilization will aid in the development of conditions that 

improve developmental competence, especially of oocytes matured in vitro. Moreover, since 

Ca2+ is required for egg activation, the identification of the channels that mediate influx at 

fertilization as well as the development of specific channel blockers could become a novel, 

non-hormonal method of contraception to be used in humans, or to prevent the uncontrolled 

population growth of wild life species. 
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CHAPTER 4 

MATERIALS & METHODS 

Animal Husbandry 

Double knockout mice and heterozygous mice were generated by breeding a female 

TRPV3-/- mouse (Cheng et al., 2010) of mixed C57BL/6J and 129/SvEvTac background to a 

male Cacna1h-/- mouse (Jackson Laboratories, Bar Harbor, ME) with a B6;129-

Cacna1htm1Kcam/J background to generate F1 offspring heterozygous for TRPV3 and Cacna1h 

(dHET; +/-). Initial double knockout (dKO; -/-) and dHET mice were obtained by intercross of 

heterozygotes and maintained on a mixed C57BL/6 and 129/SvEvTac background. Ear clips 

from offspring were collected prior to weaning. 

Genotyping/PCR Analysis 

Mice were identified and genotyped using tissue from an ear clip, which was collected 

and lysed using tail lysis buffer (Tris pH 8.8 [50mM], EDTA pH 8 [1mM], Tween 20 [0.5%], 

proteinase K [0.3 mg/mL]). Genomic DNA was then stored at -20˚C for later use in PCR 

analysis. Mouse genotyping was routinely performed using PCR followed by separation of the 

amplified DNA fragments on a 1.2% agarose gel. For TRPV3, F7622, 5’-

GACATGCCATGCAAAAAACTACCA-3’ and R28432, 5’-

GTCTGTTATATGTACAGGCATGG-3’ primers were used. The Trpv3 wildtype (WT) and 

mutant alleles yielded products of 300 bp and 800 bp, respectively. For Cacna1h, 11395, 5’-

ATTCAAGGGCTTCCACAGGGTA-3’, 11396, 5’-CATCTCAGGGCCTCTGGACCAC-3’, 

and oIMR2063, 5’-GCTAAAGCGCATGCTCCAGACTG-3’ primers were used. The 

Cacna1h WT and mutant alleles yielded products of 480 bp and 330 bp, respectively. All 

primers were purchased from IDT Technologies (Coralville, IA). Primers and procedures were 
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in the original manuscripts reporting the generation of these KO lines (Cheng et al., 2010; Chen 

et al., 2003). 

Oocyte Collection 

Six-to-ten-week-old females were superovulated by intraperitoneal (i.p.) injection of 5 

IU pregnant mare serum gonadotropin (PMSG, Calbiochem, EMD Biosciences), followed by 

i.p. injection of 5 IU human chorionic gonadotropin (hCG, Calbiochem, EMD Biosciences) 

46-48 hours post-PMSG stimulation. Ovulated, metaphase-II (MII) arrested eggs were 

obtained by rupturing the oviducts with fine forceps in HEPES-buffered Tyrode’s Lactate (TL-

HEPES) solution supplemented with 5% heat-treated fetal calf serum (FCS, Gibco) 12-14 

hours post hCG stimulation. Cumulus cells were removed using 0.1% bovine testes 

hyaluronidase (Sigma, St. Louis, MO) and gentle aspiration through a pipette. For GV oocyte 

collection, ovaries of females were collected after 46-48 hours post-PMSG stimulation. 

Ovaries were gently macerated and cumulus-intact GV oocytes were recovered into a TL-

HEPES solution supplemented with 5% FCS and 100 µM 3-isobutyl-1-methylxanthine 

(IBMX, Sigma) to block spontaneous progression of meiosis. All procedures were performed 

according to research animal protocols approved by the University of Massachusetts 

Institutional Animal Care and Use Committee. 

Calcium [Ca2+]i Imaging and Reagents 

[Ca2+]i monitoring was performed as previously reported by our laboratory (Kurokawa 

et al., 2007). Briefly, eggs were loaded with the Ca2+ sensitive dye Fura-2-acetoxymethyl ester 

(Fura-2AM, Molecular Probes; Invitrogen). Eggs were loaded with 1.25µM Fura-2AM 

supplemented with 0.02% pluronic acid (Molecular Probes) for 20 minutes at room 

temperature. To estimate [Ca2+]i, eggs were thoroughly washed and immobilized on a glass 
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bottom monitoring dish (Mat-Tek Corp., Ashland, MA) submersed in FCS-free TL-HEPES 

under mineral oil. Eggs were monitored under a Nikon Diaphot microscope outfitted for 

fluorescence measurements. The objective used was a 20X Nikon Fluor. The excitation lamp 

was a 75 W Xenon lamp, and emitted light >510 nm was collected by a cooled Photometrics 

SenSys CCD camera (Roper Scientific, Tucson, AZ) using NIS-Elements software (Nikon, 

Melville, NY). Eggs were alternatively illuminated with 340 nm and 380 nm light by a 

MAC5000 filter wheel/shutter control box (Ludl Electronic Productions Ltd.), and 

fluorescence was captured every 20 s. 

To examine the role of Ca2+ influx in refilling [Ca2+]ER, we monitored eggs in nominal 

Ca2+-free, FCS-free TL HEPES. After a 5-8-minute baseline recording, [Ca2+]ER levels were 

assessed by the addition of 10µM Thapsigargin (TG; Calbiochem, San Diego, CA), an inhibitor 

of the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump, which induced a Ca2+ leak 

via an unknown mechanism. The magnitude of the TG-induced Ca2+ rises were regarded as an 

estimate of the [Ca2+]ER content, which was calculated from the area under the curve of the 

[Ca2+]i rise using Prism (GraphPad Software, La Jolla, CA). When [Ca2+]i returned to near 

baseline values, ∼35 min after TG addition, 5 mM CaCl2 was added to the medium, and the 

amplitude of the [Ca2+]i rise caused by the addition was used to estimate Ca2+ influx. In other 

experiments, the addition of 2.5µM Ionomycin (IO), a Ca2+ ionophore, was used to assess total 

store content of the egg. IO-induced Ca2+ rises were regarded as the total [Ca2+]i that could be 

estimated from the area under the curve of the [Ca2+]i rise using Prism. 

Parthenogenetic Activation 

For TRPV3-mediated egg activation, eggs were collected as described above in TL-

HEPES supplemented with 5% FCS. For Ca2+ monitoring, eggs were loaded with Fura-2AM, 
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then immobilized to a glass-bottom monitoring dish (Mat-Tek Corp) under nominal Ca2+- and 

FCS-free TL-HEPES supplemented with 10mM SrCl2 submersed in mineral oil. For Sr2+ 

activation, eggs were incubated in 5% CO2 at 37˚ C for 2 h in Ca2+-free Chatot, Ziomek, or 

Bavister (CZB; Chatot et al., 1989) medium supplemented with either 3 mg/mL BSA or 0.1% 

polyvinyl alcohol (PVA), and 10mM SrCl2. Eggs were then washed and transferred to 

potassium-supplemented simplex optimized medium with amino acids (KSOMAA), and 

cultured to the 2-cell stage. Eggs were evaluated at 5-6 h and 22-24 h post treatment under 

phase contrast microscopy. Activated eggs were classified according to the following criteria: 

(1) PN group, consisted of zygotes forming a single PN with first and second polar bodies (5 

h post-treatment); (2) cleaved group; eggs undergoing immediate cleavage after 24 h. Eggs 

without 2nd polar bodies, PN formation, or those failing to cleave were considered as non-

activated (MII egg). Fragmented eggs were excluded from analysis. 

Microinjections 

Eggs were microinjected as described previously by our lab (Kurokawa et al., 2005). 

cRNA was heat denatured and centrifuged. The top 2µL was used to prepare microdrops from 

which glass micropipettes were loaded by aspiration. 7-12 pL (1-3% of the total volume of the 

egg) cRNA was delivered into eggs by pneumatic pressure (PLI-100 picoinjector, Harvard 

Apparatus). The full-length of mouse PLCζ, cDNA, a kind gift from Dr. K. Fukami (Tokyo 

University of Pharmacy and Life Science, Japan) was subcloned into pcDNA6/ myc-His 

(Invitrogen, Carlsbad, CA) for in vitro transcription. Plasmids were linearized and the cDNA 

was in vitro transcribed using the T7 mMESSAGEmMACHINEKit (Ambion, Invitrogen). 
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Sperm Isolation 

Sperm isolation and IVF sperm cells were obtained from 10-16 week-old male CD1 

mice. The cauda epididymis of the sacrificed male was collected and sliced with scissors in 

500µL of TL-HEPES or Toyoda, Yokoyama, Hosi (TYH) medium supplemented with 4 

mg/mL bovine serum albumin (BSA; Sigma). The epididymis was incubated for 10-15 min at 

37˚ C and 5% CO2 then then removed, and sperm were incubated for an additional 1 h under 

the same conditions. Procedures were as described by Navarrete et al., 2016.  

IVF 

For standard IVF, expanded cumulus-oocyte-complexes were released from the 

oviduct and directly transferred to 90µL drops of TYH medium supplemented with 4 mg/mL 

BSA that was equilibrated overnight in 5% CO2 at 37˚ C, and 0.1-0.3 x 106 sperm/mL were 

added. Complexes were incubated for 1 h, washed of excess sperm, and loaded with Fura-2AM 

for Ca2+ monitoring as described above. IVF procedures were performed as described by the 

Visconti Lab (Navarrete et al., 2016).  

ICSI 

ICSI was performed according to the methods described by Yoshida and Perry, 2007. 

Isolated sperm were sonicated for 5 s and sperm tails were washed away through serial bench 

centrifugation and supernatant removal and dilution. Sperm heads were then mixed 1:1 with 

6% polyvinylpyrrolidone (PVP; Sigma). Eggs were injected using a piezo micropipette-driven 

unit (PiezoDrill; Burleigh Instruments Inc., Rochester, NY). ICSI was performed in TL-

HEPES supplemented with 5% FCS and 2% sucrose (Sigma). 
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Statistical Analysis 

Values from three or more experiments performed on different batches of eggs were 

used for evaluation of statistical significance. Prism (GraphPad Software) was used to perform 

the Student’s t-test, one-way ANOVA, and graph productions. All data are presented as mean 

± SEM. Differences were considered significant at p < 0.05 and denoted in bar graphs by the 

presence of asterisks. 

Chemical Reagents 

Ionomycin, thapsigargin, PMSG, and hCG were purchased from Calbiochem (San 

Diego, CA). Fura-2AM and pluronic acid were purchased from Invitrogen (Carlsbad, CA). All 

other chemicals were from Sigma (St Louis, MO), unless otherwise specified. 
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